

Allogeneic stem cell transplantation for patients with PNH

Xiao-Jun Huang M.D.

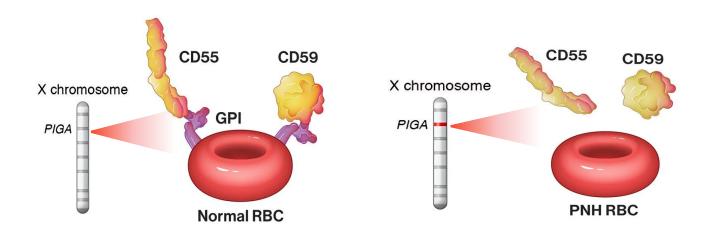
National Clinical Research Center for Hematologic Disease
Peking University Institute of Hematology
Peking University People's Hospital

CONFLICT OF DISCLOSURES

I have no personal or financial interests to declare.

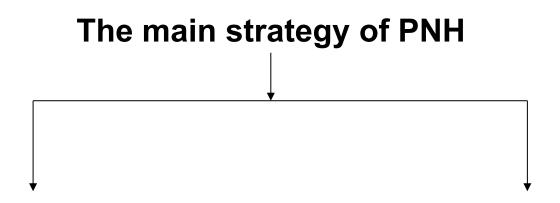
Content

The evolution of HSCT in Paroxysmal Nocturnal Hemoglobinuria


The development of G-CSF/ATG based haploidentical protocol

3 Haploidentical HSCT for PNH

Paroxysmal Nocturnal Hemoglobinuria (PNH)


- PNH is a rare clonal HSC disorder caused by somatic mutation in the PIGA gene, leading to a deficiency of GPI-anchored proteins (complement regulatory protein CD55, CD59)
- ◆ The deficiency of CD55 and CD59 activates the complement system

- ✓ Chronic hemolytic anemia due to complement-mediated red cell lysis
- ✓ Bone marrow failure (BMF)
- √ Thrombosis

The treatment of PNH

Complement inhibitor

C5 inhibitor

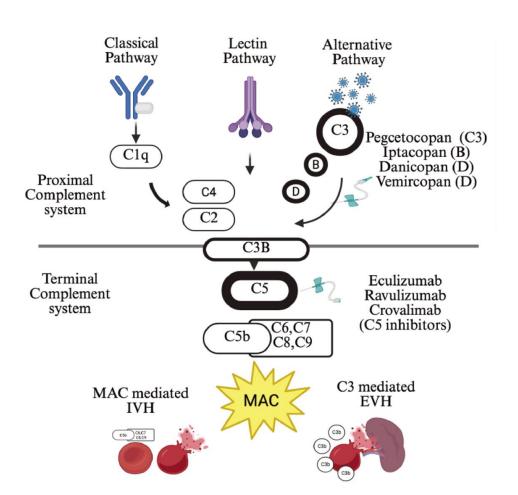
C3 inhibitor

Factor B or D inhibitor

• • • • • •

Allo-HSCT

Matched sibling donor


Unrelated donor

Haploidentical donor

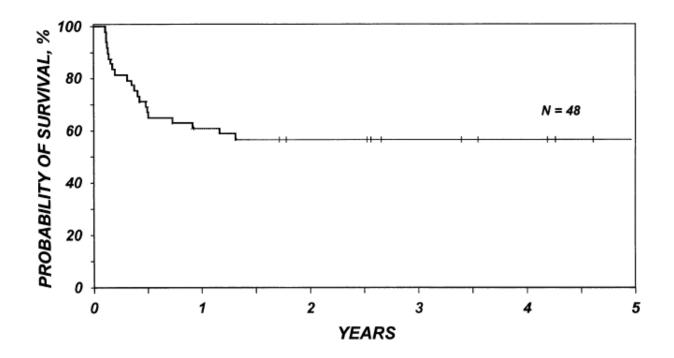
• • • • • •

The advancing landscape of novel complement inhibitors in PNH

FDA-approved complement inhibitors for PNH

Drug (brand name)	Approval year	Mechanism of action	Route	Dosing frequency
Eculizumab (Soliris)	2007	C5 inhibitor	IV	Q2W
Ravulizumab (Ultomiris)	2018	C5 inhibitor	IV	Q8W
Pegcetacoplan (Empaveli)	2021	C3 inhibitor	SUBQ	BIW
Iptacopan (Fabhalta)	2023	Factor B inhibitor	Oral	BID
Danicopan (Voydeya)	2024	Factor D inhibitor	Oral	TID
Crovalimab (Piasky)	2024	C5 inhibitor	SUBQ	Q4W

MAC: membrane attack complex; IVH: intravascular hemolysis; EVH: extravascular hemolysis


The early outcomes of HSCT in PNH, mainly from MSD

Data from International Bone Marrow Transplant Registry (IBMTR) between 1978 and 1995

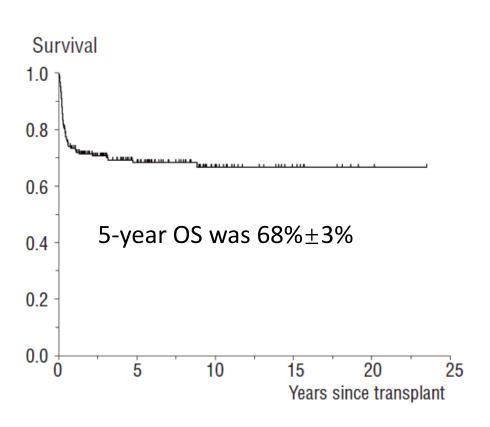
AND 1991 (14 1991 X 11 11 11 X 11 11 11 X 11 11 11 X 11 11	20 (10 45)
Age, median (range), years	28 (10-47)
Male sex, n (%)	26 (46%)
Severe aplastic anaemia pretransplant, n (%)	18 (32%)
Interval from diagnosis to transplant,	26 (2-240)
median (range), months	

Donor, n (%)	
HLA-identical sibling	48 (84%)
Identical twin	2 (3%)
Parent	1 (2%)
Unrelated donor	6 (11%)
Conditioning regimen (first transplant), n (%)	
Busulphan + cyclophosphamide	30 (53%)
Total body radiation + cyclophosphamide	12 (21%)
± other	
Limited field radiation + cyclophosphamide	11 (19%)
± other	
Cyclophosphamide alone	3 (5%)
None	1 (2%)

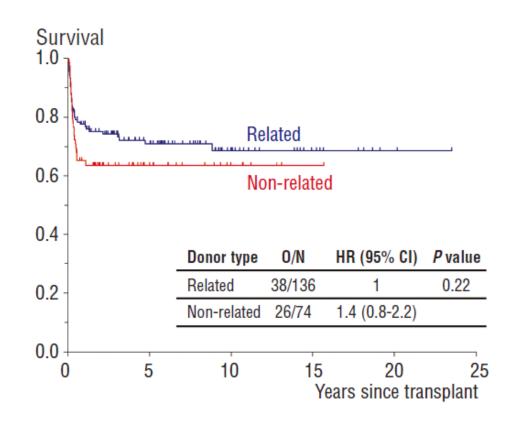
Survival after 48 HLA-identical sibling bone marrow transplants for PNH was 56%

The outcomes of HSCT in PNH from MSD or URD

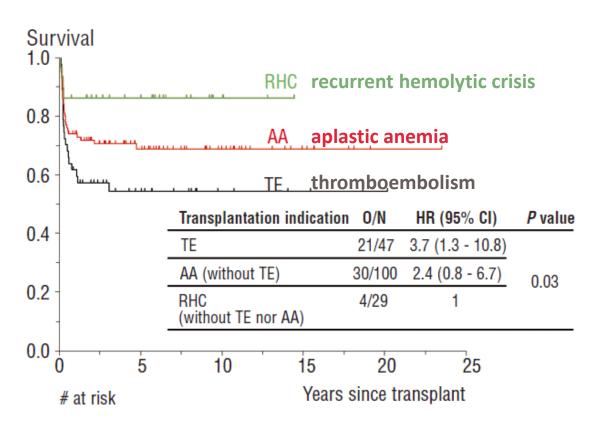
Data from EBMT between 1978 and 2007


Characteristics	n/N (%) or median (IQR ⁽⁾), N
Gender, female	106/211 (50%)
Age at transplantation, years	30 (23-39)
Donor type HLA-identical sibling	136/210 (65%)
Source of stem cells ^a Bone marrow Peripheral blood stem cells	135/210 (64%) 71/210 (34%)
Conditioning regimen Cyclophosphamide + busulfan Cyclophosphamide + total body irradiation (≥ 8 Gra Cyclophosphamide + anti-thymocyte globulin Fludarabine-based regimen	47/144 (33%) y) 22/144 (15%) 32/144(22%) 42/144 (29%)
GvHD prophylaxis Cyclosporine ± methotrexate	154/211 (73%)

- 211 patients from 83 HSCT centers
- Median follow-up: 61months
- Engraftment failure: 7%
- Grade II-IV acute GvHD: 40%
- Chronic GvHD at 5 years: 29%
- Only 1 patient relapsed with PNH

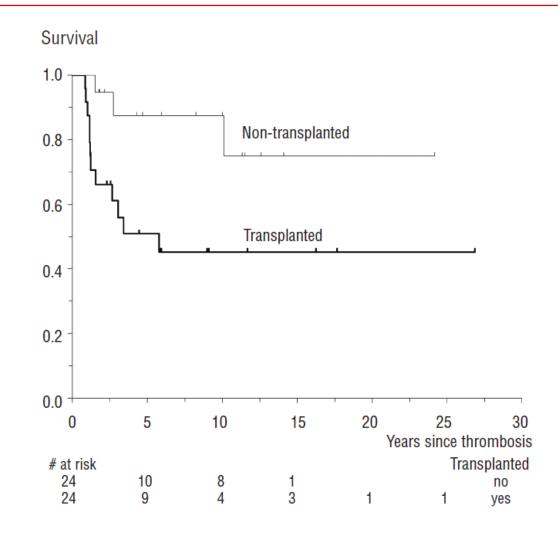

The outcomes of HSCT in PNH from MSD or URD

Survival in the whole cohort



Survival according to donor type

The outcomes of HSCT in PNH based on transplant indication


- The 5-year OS was 54%±7% in the case of thromboembolism (TE)
- The 5-year OS was 69%±5% in the case of aplastic anemia (AA) without TE
- The 5-year OS was 86%±6% in the case of recurrent hemolytic crisis (RHC) without TE or AA

Patients with thromboembolism failed to benefit from HSCT

Thrombosis: comparison of survival between transplanted and non-transplanted patients

- For the matched-pair analysis, 24 pairs of transplanted and non-transplanted patients have been identified.
- A significant difference was observed in OS between the two groups, with better OS for nontransplanted patients.

Updated Data from EBMT

240 PNH patients HSCT between 2011 and 2020 across 125 centers

Survival according to HSCT age

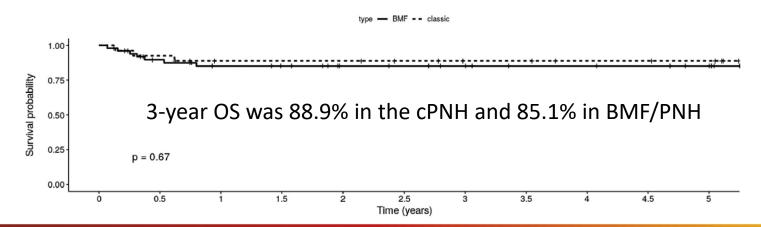
Patient age	Survival
<20 years	83%
20-40 years	82%
>40 years	67%

Survival according to Donor type

Donor type	Survival
Matched sibling	86%
Matched unrelated	78%
Mismatched unrelated	62%

The outcomes of HSCT in PNH with or without bone marrow failure (BMF)

Data from Polish Acute Leukemia Group (PALG)


- > cPNH group: a classical form of PNH, predominantly hemolytic without overt marrow failure.
- ➤ BMF/PNH group: a form associated with bone marrow failure (BMF), mostly aplastic anemia and incidentally myelodysplastic syndromes, irrespective of the presence or absence of hemolysis.

Characteristic	All Patients (N = 78)	cPNH Group (N = 27)	BMF/PNH Group (N = 51)	P Value
Age at allo-HSCT, yr, median (range)	29 (12-65)	35 (16-52)	27 (12-65)	.024
Time between diagnosis and allo-HSCT, mo, median (range)	12 (1-127)	20 (5-123)	9 (1-127)	.002
Clone size at allo-HSCT, %, median (range)	30 (0-95)	80 (0-95)	19 (.25-95)	.003
Number of patients tested	45	16	29	
Conditioning intensity, n (%)				.455
MAC	5 (6)	3 (11)	2 (4)	
RTC/RIC	73 (94)	24 (89)	49 (96)	
Donor, n (%)				1.0
Identical sibling	19 (24)	7 (26)	12 (23)	
MUD	49 (63)	16 (59)	33 (65)	
MMUD	10 (13)	4(15)	6 (12)	

Similar outcomes of HSCT in PNH with or without bone marrow failure (BMF) WIPIG

Characteristic	All Patients (N = 78)	cPNH Group (N = 27)	BMF/PNH Group (N = 51)	P Value
Engraftment, n (%)	75 (96)	26 (96)	49 (96)	1.0
Time to hematopoietic recovery, d, median (range)				
$ANC > .5 \times 10^9/L$	18 (6-29)	19 (10-29)	18 (6-26)	.399
$PLT > 20 \times 10^9 / L$	14 (5-35)	14 (11-27)	15 (5-35)	.421
Acute GVHD, all, n (%)	39 (50)	11 (41)	28 (55)	.341
Chronic GVHD, all, n (%)	22 (28)	9 (33)	13 (25)	.64
Chronic GVHD degree, n (%)				.086
Limited	14 (18)	8 (30)	6 (12)	
Extensive	7 (9)	1 (4)	6 (12)	
Missing data	1(1)	0(0)	1(2)	
Donor chimerism				.528
%, median (range)	100 (86-100)	100(86-100)	100 (90-100)	

How we treat paroxysmal nocturnal hemoglobinuria

A consensus statement of the Canadian PNH Network

Recommendations

- We suggest that ASCT not be considered standard of care for patients with hemolytic PNH, nor in patients with thromboembolism.
- We suggest that ASCT be considered in patients with severe aplastic anemia and presence of a PNH clone, according to the same algorithms used for patients with severe aplastic anemia alone.
- We suggest that ASCT be considered in PNH patients with evidence of clonal evolution (eg, MDS, leukemia).

The indication of HSCT treating PNH from America or Europe

Candidates for HCT generally include those with life-threatening disease

- ◆ Severe aplastic anemia who have an available HLA-matched donor
- PNH complications unresponsive to eculizumab orunavailable eculizumab
- Some high-risk MDS

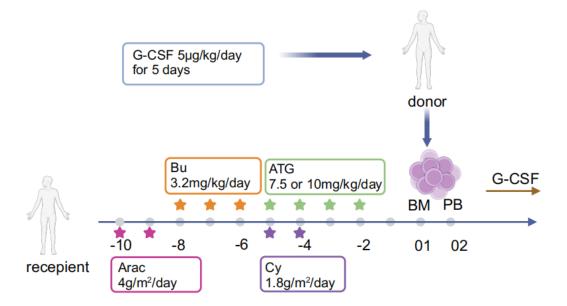
- Before the era of eculizumab, HSCT were performed in patients with severe hemolysis or thrombosis and young patients with severe AA who had an HLA-identical donor or did not respond to immunosuppressive therapy.
- Since the year of 2009, the number of HSCTs decreased dramatically, owing to the wide use of eculizumab in countries where eculizumab was available.

Summary I

- ♦ The main therapies of PNH comprise complement inhibitors and allo-HSCT
- Published multicenter data were mainly from matched sibling or unrelated donors
- ♦ Is haploidentical transplantation a viable option for PNH?

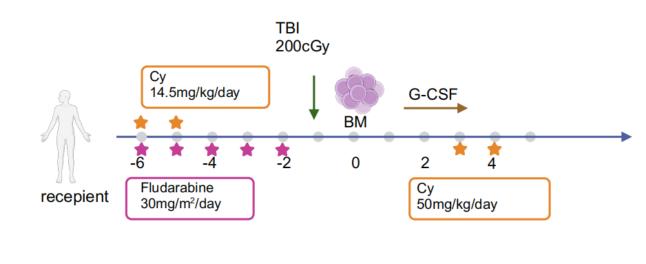
Content

The evolution of HSCT in Paroxysmal Nocturnal Hemoglobinuria


The development of G-CSF/ATG based haploidentical protocol

3 Haploidentical HSCT for PNH

Two strategies in haplo-SCT for malignant hematoligical diseases



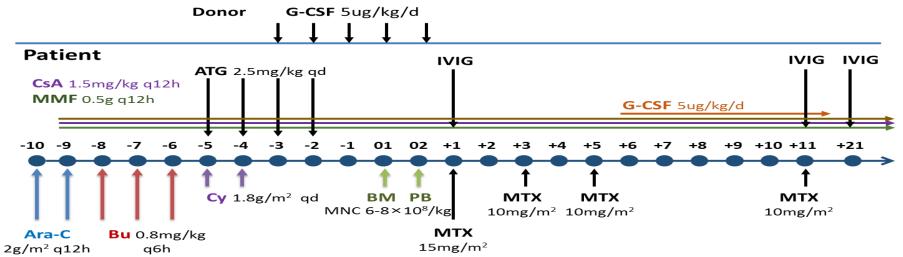
G-CSF/ATG based protocol

The first clinical report of G-CSF/ATG based protocol in 2004

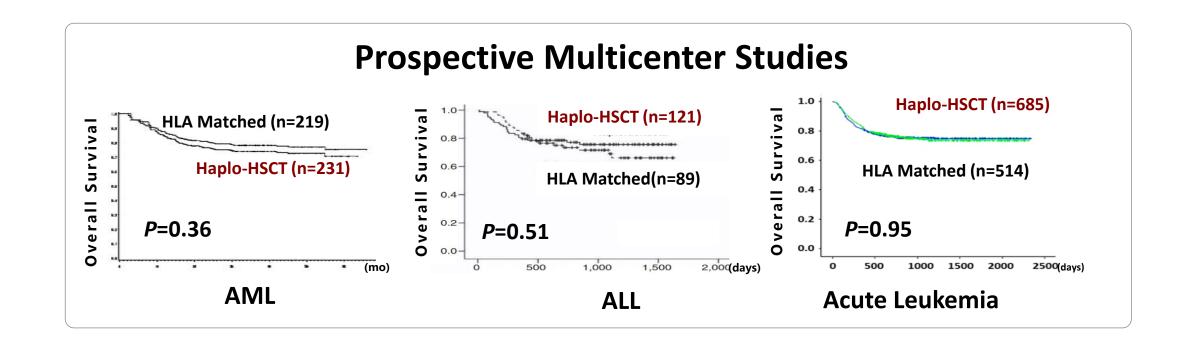
PT-Cy based protocol

The first clinical report of PT-Cy based protocol in 2008

Huang XJ, et al. Chin Med J (Engl). 2004


Luznik, et al. Biol Blood Marrow Transplant. 2008.

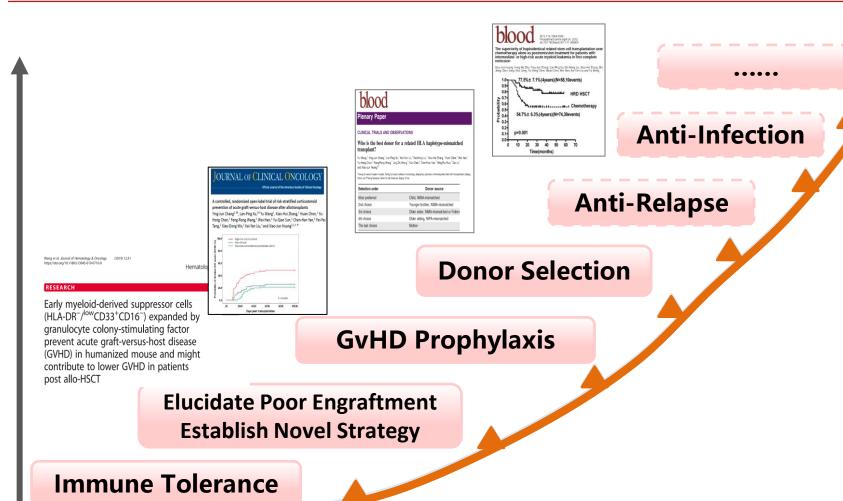
Novel regimen in haplo-SCT for leukemia



- Huang XJ, et al. Chin Med J (Engl). 2004
- Huang XJ, et al. Bone Marrow Transplant. 2006

Firstly enabling haplo- comparable to HLA matched HSCT in Malignancy

Overturning traditional concept "haplo-SCT is formidable" Form basis of new concept "haplo-SCT is feasible"


Huang XJ. et al. Blood. 2015

Huang XJ. et al. Clin Cancer Res. 2016

→ Huang XJ. et al. Leukemia. 2018

Integration of Haplo-HSCT innovations into System Globally Recognized "Beijing Protocol"

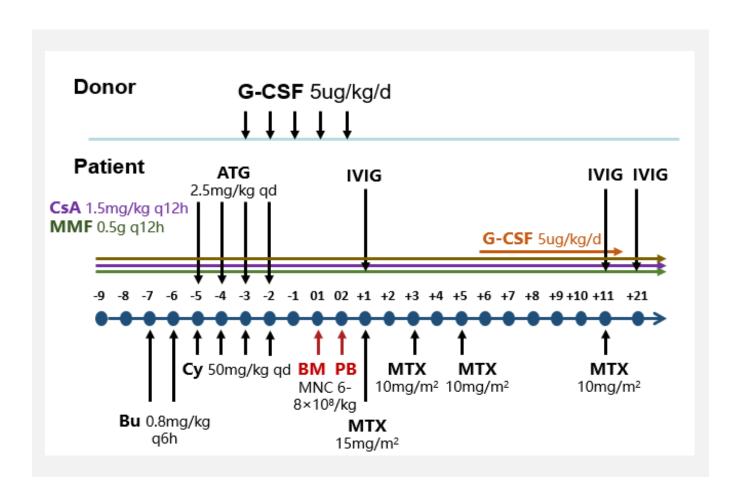
Dietger Niederwieser

Jeff Szer

Yoshihisa Kodera

In recent years the Beijing Protocol has been improved in many aspects and developed into an integrated haplo-HSCT system. The indications for haplo-HSCT have been extended from hematological malignancy to include nonmalignant disease such as severe aplastic anemia and

"Beijing Protocol" has developed into an integrated system--Reliable Treatment for Patients Without HLA-matched Sibling Donor


Apperley J, et al. Biol Blood Marrow Transplant. 2016

2000

2025

G-CSF/ATG based haplo-SCT from leukemia to aplastic anemia

Intensive regimen: Bu + Cy/ATG

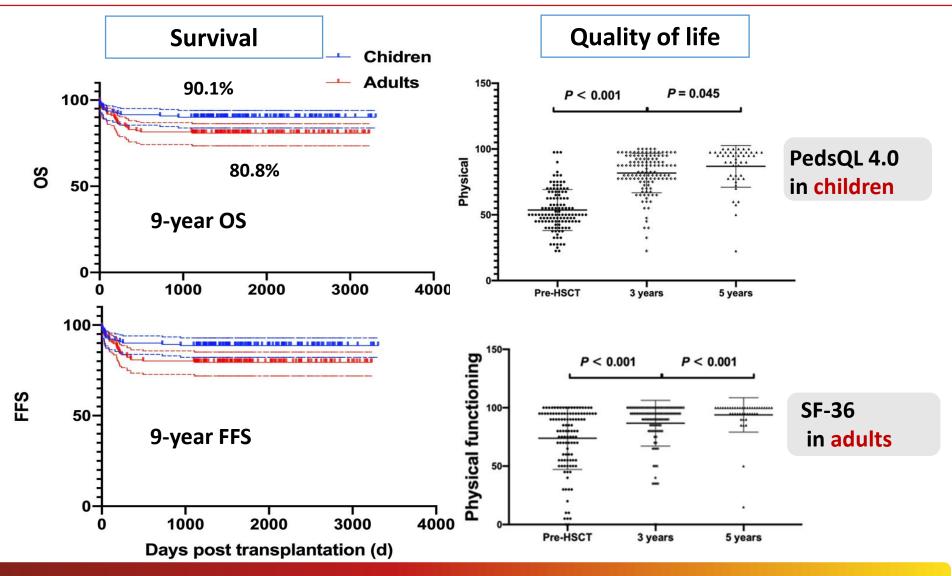
Infused graft: G-CSF primed BM + PB

GvHD prophylaxis: CsA, MTX, MMF, ATG

♦ N=19

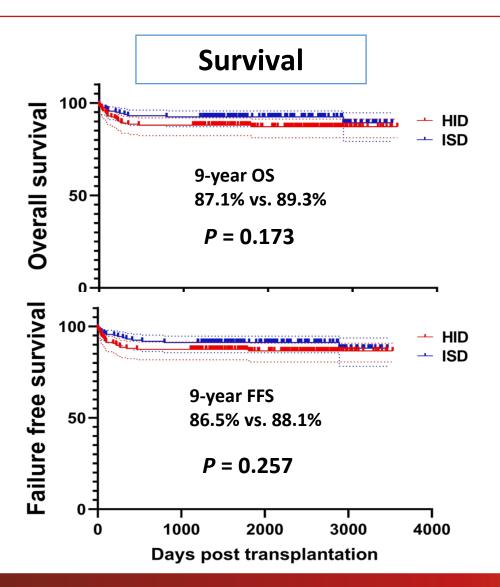
Follow-up: 746 (90–1970) days

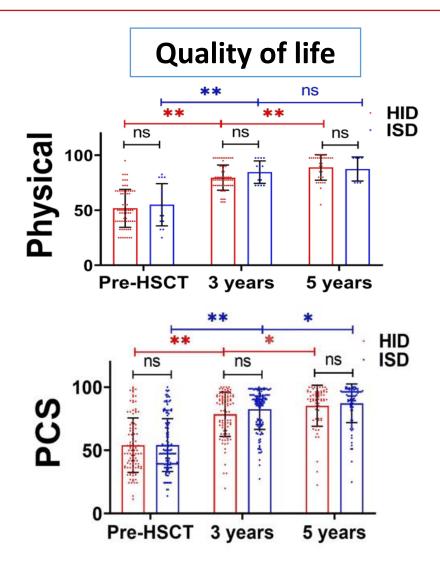
• Engraftment:


WBC: **100%**, 12(10-29) days

PLT: 84.2%, 18(8-180) days

♦ III-IV acute GvHD: 21%


G-CSF/ATG based haplo-SCT extended to SAA: Salvage choice



G-CSF/ATG based haplo-SCT extended to SAA: Upfront choice

PedsQL 4.0 in children

SF-36 in adults

G-CSF/ATG based haplo-HSCT for AA: Expert commentary

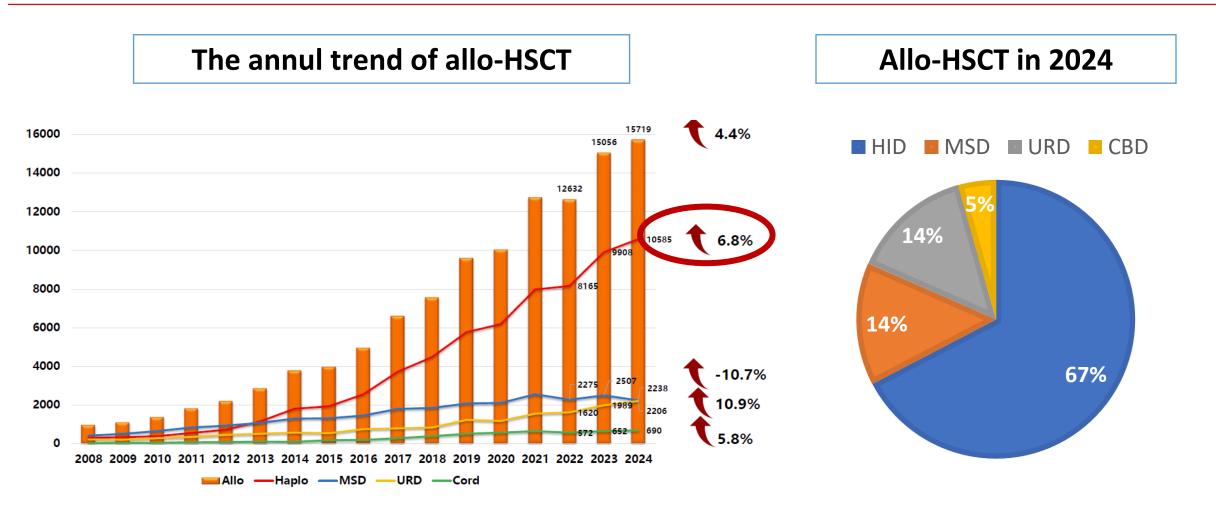
Science Bulletin

Prof. Arnon Nagler Co-Chair of ALWP of the EBMT

transplants for hematological malignancies in China paving the way for many other transplant centers in the world, establishing the G-CSF primed bone marrow and peripheral blood combined stem cell source be confirmed in additional SAA patient cohorts and in multicenter studies. In conclusion, treatment of severe aplastic anemia including with HSCT has improved significantly over the past 4 decades and the study by Dr. Xu Lang-Ping on behalf of his colleagues from the Peking University People's Hospital and Institute of Hematology, Beijing, China is an important step forward.

The NEW ENGLAND JOURNAL of MEDICINE

Prof. Neal S. Young National Institutes Of Health



used to prevent GVHD. The results have been encouraging on the basis of extensive experience in Chinese centers, with much smaller series of transplant recipients in the United States and Europe (Table 3). Haploidentical transplantation has been advocated in China as first-line treatment for children.⁹²

The results have been encouraging on the basis of extensive experience in Chinese centers...

Haplo HSCT has developed rapidly in China

Data from Chinese Blood and Marrow Transplantation Registry Group (CBMTR)

Summary II

- ◆ G-CSF/ATG based haploidentical protocol (Beijing Protocol) has led to inspiring survival in leukemia and aplastic anemia.
- Could haplo-SCT extend to Paroxysmal Nocturnal Hemoglobinuria?

Content

The evolution of HSCT in Paroxysmal Nocturnal Hemoglobinuria

The development of G-CSF/ATG based haploidentical protocol

Haploidentical HSCT for PNH

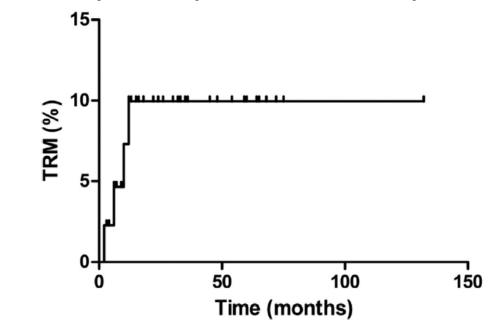
The G-CSF/ATG based haplo-HSCT in PNH: initial experience

		aftment ays)		GVHD		
Case	ANC >0.5 × 10 ⁹ /L	PLT >20 × 10 ⁹ /L	Full-donor chimerism (days)	Acute	Chronic	Follow-up (months)/ Outcome
1	15	33	34	Grade I	Limited	21/Alive
2	11	13	28	Absent	Absent	19/Alive
3	12	20	30	Grade I	Limited	14/Alive
4	13	28	36	Absent	Limited	15/Alive
5	12	18	32	Absent	Limited	29/Alive
6	First transplant: gra	aft failure	_	-	_	6/Dead (infection)
	14	23	42	Grade II	Absent	
7	12	18	32	Grade III	Limited	15/Alive
8	12	15	40	Absent	Absent	17/Alive
9	12	14	34	Grade II	Extensive	20/Alive
10	11	13	34	Grade II	Absent	17/Alive

Haplo-HSCT:

9/10 alive and transfusion-independent

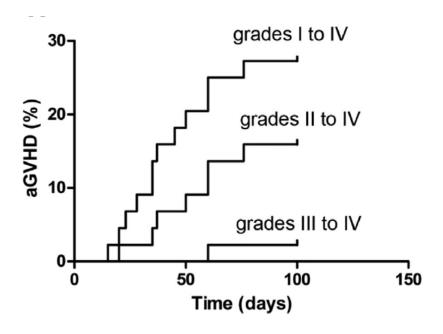
4 II/III aGVHD


5 limited cGVHD, 1 ex cGVHD

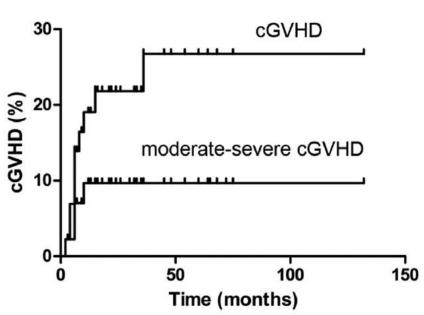
The G-CSF/ATG based haplo-HSCT in PNH: single center experience

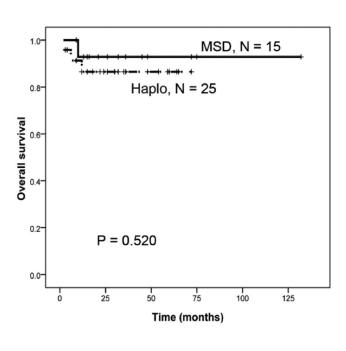
Conditioning regimen of classic PNH, n (%)	
Fludarabine + Cy + ATG	8 (53.33)
Bu + Cy + ATG	7 (46.67)
Conditioning regimen of PNH-AA syndrome, n (%)	
Fludarabine + Cy + ATG	7 (24.14)
Bu + Cy + ATG	22 (75.86)
Donor type, n (%)	
HLA-identical sibling	15 (34.09)
HLA-MUDs	4 (9.09)
HLA-haplo-donors	25 (56.82)
GVHD prophylaxis, n (%)	
CsA (HLA-identical sibling)	15 (34.09)
CsA + MMF + MTX	
HLA-MUDs	4 (9.09)
HLA-haplo-donors	25 (56.82)

44 PNH cases from one center The 1-year transplant-related mortality was 9.95%



The causes of TRM included GVHD in 1 case, TMA in 1 case, and infection in 2 cases


The G-CSF/ATG based haplo-HSCT in PNH: single center experience



cGVHD

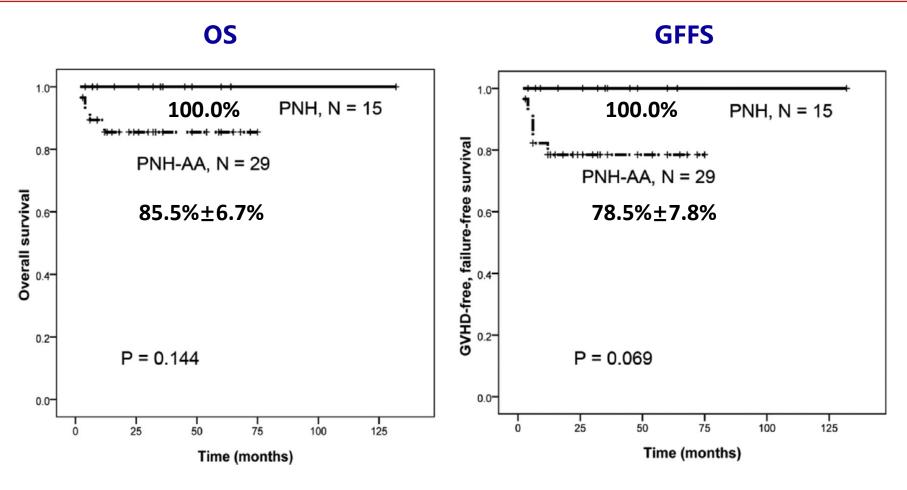
OS

Grades I to IV: 27.27%

Grades II to IV: 15.91%

Grades III to IV: 2.27%

cGVHD: 26.73%


Moderate to severe cGVHD: 9.70%

HID: 86.5%±7.3%

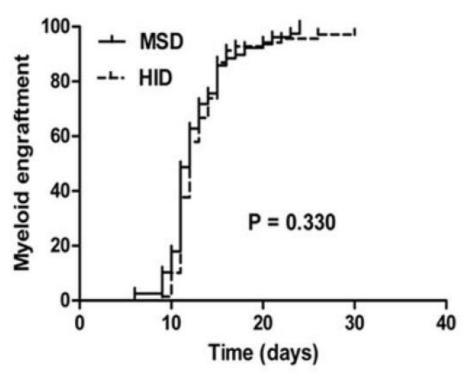
MSD: 93.3%±6.4%

The G-CSF/ATG based haplo-HSCT in PNH: single center experience

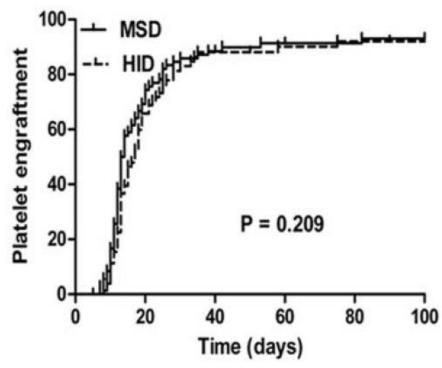
PNH: classic PNH
PNH-AA: clinical PNH (PNH clone > 5%) with aplastic anemia (AA)

The comparison of haplo-HSCT and MSD in PNH: multicenter study

Multicenter study in China

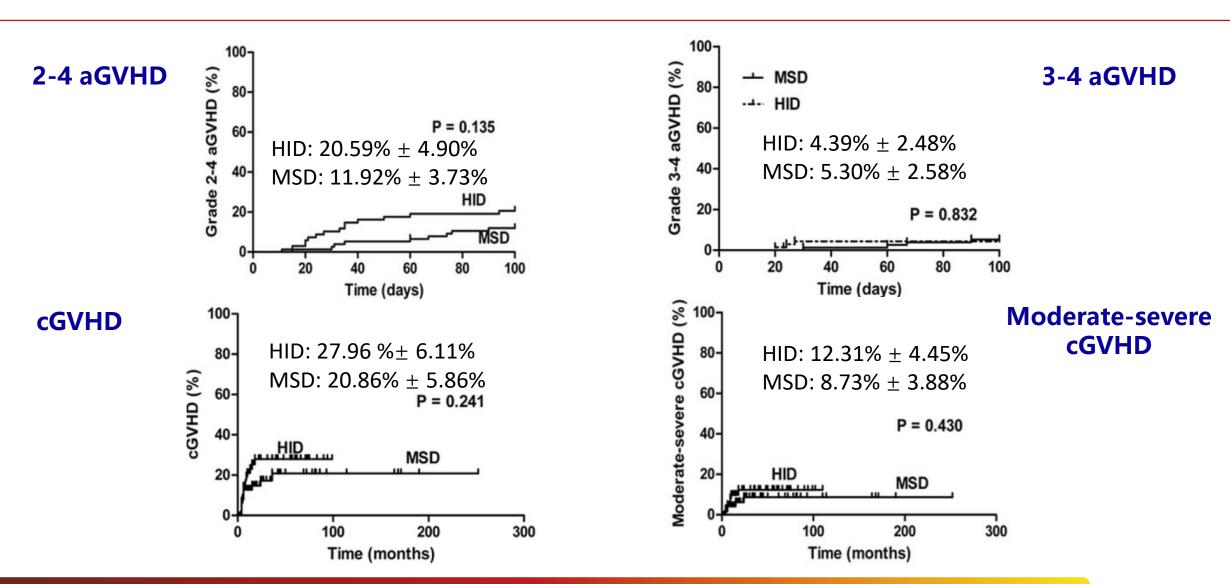

- 151 patients from 10 centers
- HSCT from year of 2002 to 2021
- ◆ HID: n=73
- ◆ MSD: n=78
- All haplo- applied G-CSF/ATG based protocol

Variable	HID (<i>n</i> = 73)	MSD (n = 78)	P
Clinical characteristics			
Median age, years (range)	23 (6–54)	30 (14–50)	0.100
≤ 20 years, no. (%)	20 (27.40)	11 (14.10)	0.039
21–39 years, no. (%)	34 (46.58)	46 (58.97)	0.127
≥ 40 years, no. (%)	19 (26.03)	21 (26.92)	0.901
Gender (male/female)	42/31	52/26	0.247
Classification of PNH at tr	ansplantation, no.	(%)	
Classical PNH	13 (17.81)	27 (34.62)	0.019
PNH in the setting of and	ther BM disorder		
PNH-AA syndrome	59 (80.82)	48 (61.54)	0.009
PNH-MDS	0 (0.00)	3 (3.85)	0.267
PNH-AML	1 (1.37)	0 (0.00)	0.483


Similar incidence of engraftment between haplo-HSCT and MSD in PNH

Platelet engraftment

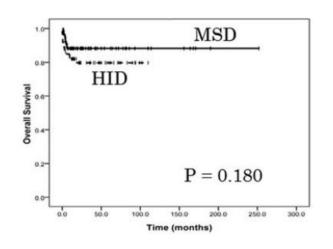
HID: 97.10% ± 2.02%


MSD: 100.00 %

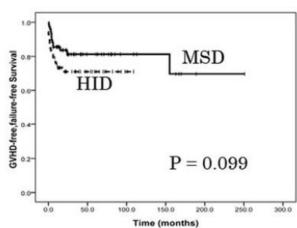
HID: 92.07% ± 3.56%

MSD: 97.69% ± 2.14%

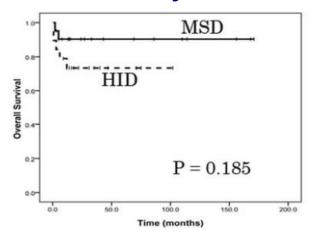
Similar incidence of GVHD between haplo-HSCT and MSD in PNH



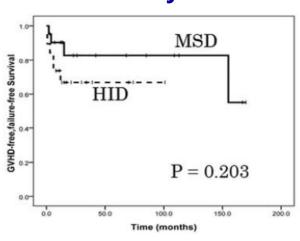
Similar Survival rates between haplo-HSCT and MSD in PNH



OS in whole cohort


HID: 79.7% ± 4.9% MSD: 88.2% ± 3.7%

GFFS in whole cohort


HID: 71.0% ± 5.6% MSD: 81.2% ± 4.9%

OS in patients ≥40 years

HID: 73.3% ± 10.2% MSD: 90.2% ± 6.6%

GFFS in patients ≥40 years

HID: 67.0% ± 11.2%

MSD: 82.7% ± 9.4%

The indication of HSCT treating PNH in China

Guidelines for the diagnosis and management of PNH (2024) Chinese Society of Hematology

- Failure of complement inhibitor therapy
- Severe classic PNH in which complement inhibitors are not accessible
- PNH with severe/refractory bone marrow failure
- PNH evolving into MDS or acute myeloid leukemia

*Unlike the Chinese guidelines, other current international guidelines recommend that transplant candidates should have an HLA-matched sibling donor.

The indication of HSCT treating PNH in China

The consensus from The Chinese Society of Hematology

Zhang et al. J Hematol Oncol (2021) 14:145 https://doi.org/10.1186/s13045-021-01159-2 Journal of Hematology & Oncology

REVIEW Open Access

The consensus from The Chinese Society of Hematology on indications, conditioning regimens and donor selection for allogeneic hematopoietic stem cell transplantation: 2021 update

 PNH patients who develop clonal evolution, resulting in MDS/AML

PTCy based Haplo-HSCT in PNH with limited cases

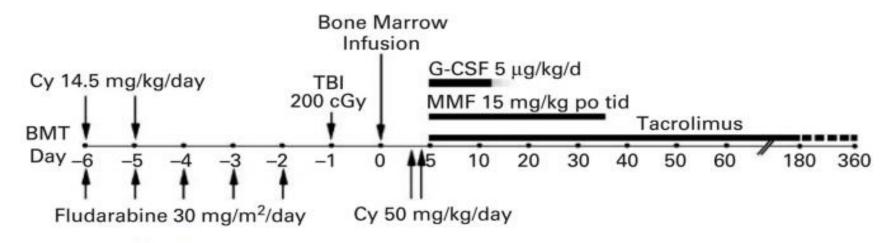
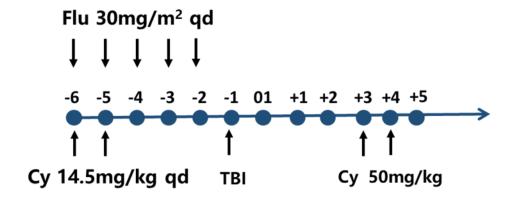


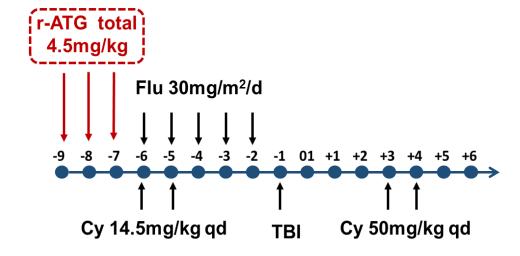
Figure 1.


Treatment schema. CY = cyclophosphamide; MMF = mycofenolate mofitil; TBI = total body irradiation.

- 3 patients with thrombotic PNH
- 1 patient died of infection on +8d
- 2 patients achieved sustained engraftment and DFS

Modified PTCy by adding low dose ATG based haplo-SCT in SAA

Traditional



>2011---2017, N=33

≻ Engraftment: **67%**

> 2-year OS: 78%

Modified

> 2017---2020, N=32

≻ Engraftment: 94%

> 1-year OS: 81%

Summary III

- Haplo-HSCT with PTCy based protocol has limited cases in non-malignancy
- Haplo-HSCT has curative role in management of PNH with an acceptable survival rate, data mainly from G-CSF/ATG based protocol
- Haplo-HSCT may be a viable option for patients with PNH who lack HLAmatched donors

THANK YOU!